

Structured-Illumination Quantitative Phase Imaging

Sri Rama Prasanna Pavani, Ariel R. Libertun, and Carol Cogswell Micro Optical – Imaging Systems Laboratory Optoelectronic Computing Systems Center University of Colorado at Boulder <u>http://moisl.colorado.edu</u>

Phase Imaging

Goal: To measure the phase of an object

 Transparent objects like biological cells cannot be seen in transmission microscopy, as they don't absorb light.

Problems:

- Imaging of phase objects with fluorescent dyes is invasive.
- Phase objects cannot be accurately measured with Phase contrast and DIC as they are non-quantitative techniques.
- Interference microscopes have phase wrapping issues.

Brightfield image of a water droplet

Structured Illumination

Our solution:

- Illumination is structured with a known periodic pattern and is passed through the phase object.
- The phase object deforms the structure
- Phase is measured from the deformation of structure.

Structure

Deformed structure

Demo

Structured Illumination Microscopy

- Structure is placed at the field diaphragm
- Field diaphragm is imaged on the sample
- Structure distortions are recorded with a CCD camera

Coherent Optical System

- A 4f imaging system images the structure on the phase object
- Fourier mask is used to tweak the structure pattern
- An objective is used to image the structure distortions

Experimental Results

Microscopy:

Coherent system:

Numerical Simulations

Cubic Phase Object

Micro-lens Phase array

Micro-lens Phase array plots

Phase estimation

- Estimate phase by comparing the deformed structure to the original structure
- The phase is extracted from
 1. Periodicity of the deformed structure
 2. Size of deformed structure
 - 3. Location after deformation

Wedge phase estimation:

Comparison

	Bright Field (1590)	Phase Contrast (1934)	DIC (1955)	Structured Illumination (2006)
Phase imaging?	NXH	C	C	C
Quantitative?	NXX XXX	NKH	NKK	6)
Cost?	(?	N.M.M.	C

Looking ahead...

Conclusion:

Structured-Illumination phase imaging is a novel quantitative phase imaging technique, which can be implemented in traditional imaging systems with simple, inexpensive modifications.

Future work:

- Experimental verification with biological cells
- Unified inverse problem solution
- Incoherent numerical simulations

Estimated phase of a micro-lens array